SPRING 2025 MATH 540: QUIZ 5

Name:

1. Let X be a set and \sim a relation on X. Define what it means for \sim to be an equivalence relation. (3 points)

Solution. The relation \sim is an equivalence relation on X is it satisfies:

- (i) $x \sim x$, for all $x \in X$.
- (ii) If $x \sim y$, then $y \sim x$, for all $x, y \in X$.
- (iii) If $x \sim y$ and $y \sim z$, then $x \sim z$, for all $x, y, z \in X$.

2. For the set $\{(a, b) \mid a, b \in \mathbb{Z} \text{ and } b \neq 0\}$ discussed in class, with equivalence classes denoted [(a, b)] show that multiplication of equivalence classes given by $[(a, b)] \cdot [(c, d)] = [(ad + bc, bd)]$ is well defined. (4 points) Solution. Suppose [a, b] = [(a', b')] and [(c, d)] = [(c', d,)]. Then, ab' - a'b = 0 and cd' - c'd = 0. Multiplying the first equation by cd' and the second equation by a'b and adding we get acb'd' - a'c'bd = 0, so that [(ac, bd)] = [(a'b', c'd')], which is what we want.

3. Find all solutions to the linear congruences $6x \equiv 21 \mod 27$, both in \mathbb{Z}_{27} and in \mathbb{Z} .

Solution. We have gcd(6,27) = 3 which divides 21, so we expect 3 solutions in \mathbb{Z}_{27} . Dividing the original congruence by 3 we have $2x \equiv 7 \mod 9$, which has 8, as an element of \mathbb{Z}_{27} as a solution. The other solutions are $8 + \frac{27}{3} = 17$ and $8 + 2 \cdot \frac{27}{3} = 26$ as elements of \mathbb{Z}_{27} . As elements of \mathbb{Z} the solutions are

 $\{27n+8 \mid n \in \mathbb{Z}\} \cup \{27n+17 \mid n \in \mathbb{Z}\} \cup \{27n+26 \mid n \in \mathbb{Z}\} = \{27n+8 \mid n \in \mathbb{Z}\}$